

DPP – 1

Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/46				
Video Solution on YouTube:-		https://youtu.be/66hYcG6jPgE				
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/19				
Q 1.	A α particle after pass nucleus. If the atomic of α -particle to the nu (a) 14.4 $\frac{z}{v_{f}}$ Å	ssing through a potential difference of V volt collides with a c number of the nucleus is Z then the distance of closest approach ucleus will be- (b) $14.4 \frac{Z}{V}$ m				
	(c) $14.4 \frac{2}{v}$ cm		(d) All of the	above		
Q 2.	An α -particle of energy 5 MeV is scattered through 180° by a stationary uranium nucleus. The distance of closest approach is of the order of - (a) 1Å (b) 10 ⁻¹⁰ cm (c) 10 ⁻¹² cm (d) 10 ⁻¹⁵ cm					
Q 3.	Two protons are kept at a separation of 50Å. Fn is the nuclear force and Fe is the electrostatic force between them, then - (a) Fn $>>$ Fe (b) Fn = Fe (c) Fn $<<$ Fe (d) Fn \gg Fe					
Q 4.	As the mass number A increases, which of the following quantities related to a nucleus do not change - (a) mass (c) density (b) volume (d) binding energy					
Q 5.	Particles which can be properties are called (a) Neutrons (c) Protons	be added to the	nucleus of an a (b) electrons (d) Alpha-par	tom without changing its chemical		
Q 6.	Which of the followit (a) ${}^{40}_{18}Ar$ (c) ${}^{43}_{21}Sc$	ng is not isoton	e with others ? (b) ${}^{42}_{20}Ca$ (d) ${}^{41}_{21}Sc$			
Q 7.	The radius of the nuradius of nucleus with (a) 3×10^{-15} m (c) 6×10^{-15} m	icleus with nucleon number 2 is 1.5×10^{-15} m, then the ith nucleon number 54 will be - (b) 4.5×10^{-15} m (d) 9.5×10^{-15} m				
Q 8.	If there are N nucleon nucleus of radius 2R (a) N	ns in a nucleus will be - (b) 2N	of radius R, the (c) 8N	n the number of nucleons in a (d) 2 ^{1/3} N		

Q 9.	Attractive nuclear forces exist betwee (a) neutron - neutron (c) neutron - proton	een - (b) proton - proton (d) all of the above				
Q 10.	Binding energies of nuclei ${}^{2}_{1}H$, ${}^{4}_{2}He$, ${}^{56}_{25}Fe$ and ${}^{235}_{92}U$ are 2.22, 28.3, 492 and 1786 respectively. Most stable nucleus is -					
	(a) ${}^{56}_{25}Fe$ (b) ${}^{2}_{1}H$	(c) $^{235}_{92}U$	(d) ${}_{2}^{4}He$			
Q 11.	The binding energy of a deuterium nucleus is about 1.115 MeV per nucleon. Then mass defect of the nucleus is about $-$ (a) 2.23 u (b) 0.0024 u					
	(c) 2077 u	(d) None of the abov	e			
Q 12.	In nuclear reactions – (a) mass and momentum both are conserved (b) energy and momentum both are conserved (c) charge and momentum both are conserved (d) energy and charge both are conserved					
Q 13.	If the mass of proton = 1.008 a.m.u. energy per nucleon for ${}^{9}_{4}Be$ (mass = (a) 0.065 MeV (c) 67.2 MeV	and mass of neutron = 9.012 amu) would be (b) 60.44 MeV (d) 6.72 MeV	= 1.009 a.m.u., then binding			
Q 14.	If the binding energy per nucleon in then energy of the reaction $Li^7 + H^3$ (a) 19.6 MeV (c) 8.4 MeV	Li^7 and He^4 nuclei are $^{13}A \rightarrow 2^{4}_{2}He$ is - (b) 2.4 MeV (d) 17.3 MeV	5.60 MeV and 7.06 MeV,			
Q 15.	If the rest mass of electron or positr	on is 0.51 MeV, then th	he kinetic energy of each			
	particle in the electron-positron pair	ir production by a γ -photon of 2.42 MeV will be –				
	(a) 0.3 MeV (c) 0.7 MeV	(b) 1.9 MeV (d) 1.5 MeV				
Q 16.	An electron and a positron may annihilate one another producing two γ -ray photons					
	(a) 8.2×10^{-14} MeV	(b) 8.2×10^{-14} J	otons 1s –			
	(c) 16.4×10^{-14} MeV	(d) $16.4 \times 10^{-14} \text{ J}$				
Q 17.	A nuclear fission is represented by the following reaction : $U^{236} = X^{111} + Y^{122} + 3n$					
	If the binding energies per nucleon of X^{111} , Y^{122} and U^{236} are 8.6MeV, 8.5 MeV and					
	7.6 MeV respectively, then the ener	gy released in the react (1) 202 MaX	tion will be –			
	(a) 200 MeV (c) 195 MeV	(d) 198 MeV				
Q 18.	Calculate the mass defect for heliun $1.007276 \text{ u}, \text{ M}(n) = 1.008665 \text{ u} -$	n-4 nucleus, given M(H	He) = 4.0015084, M(p) =			

(a) 0.03074 (c) 0.030374 (b) 0.030384 (d) 0.30374

Answer Key

Q.1 a	Q.2 c	Q.3 c	Q.4 c	Q.5 a
Q.6 d	Q.7 b	Q.8 c	Q.9 d	Q.10 a
Q.11 b	Q.12 c	Q.13 d	Q.14 d	Q.15 c
Q.16 b	Q.17 d	Q.18 c		